Stochastic theory of large-scale enzyme-reaction networks: finite copy number corrections to rate equation models.
نویسندگان
چکیده
Chemical reactions inside cells occur in compartment volumes in the range of atto- to femtoliters. Physiological concentrations realized in such small volumes imply low copy numbers of interacting molecules with the consequence of considerable fluctuations in the concentrations. In contrast, rate equation models are based on the implicit assumption of infinitely large numbers of interacting molecules, or equivalently, that reactions occur in infinite volumes at constant macroscopic concentrations. In this article we compute the finite-volume corrections (or equivalently the finite copy number corrections) to the solutions of the rate equations for chemical reaction networks composed of arbitrarily large numbers of enzyme-catalyzed reactions which are confined inside a small subcellular compartment. This is achieved by applying a mesoscopic version of the quasisteady-state assumption to the exact Fokker-Planck equation associated with the Poisson representation of the chemical master equation. The procedure yields impressively simple and compact expressions for the finite-volume corrections. We prove that the predictions of the rate equations will always underestimate the actual steady-state substrate concentrations for an enzyme-reaction network confined in a small volume. In particular we show that the finite-volume corrections increase with decreasing subcellular volume, decreasing Michaelis-Menten constants, and increasing enzyme saturation. The magnitude of the corrections depends sensitively on the topology of the network. The predictions of the theory are shown to be in excellent agreement with stochastic simulations for two types of networks typically associated with protein methylation and metabolism.
منابع مشابه
Numerical modeling for nonlinear biochemical reaction networks
Nowadays, numerical models have great importance in every field of science, especially for solving the nonlinear differential equations, partial differential equations, biochemical reactions, etc. The total time evolution of the reactant concentrations in the basic enzyme-substrate reaction is simulated by the Runge-Kutta of order four (RK4) and by nonstandard finite difference (NSFD) method. A...
متن کاملDimensional Reduction of the Fokker-Planck Equation for Stochastic Chemical Reactions
The Fokker-Planck equation models chemical reactions on a mesoscale. The solution is a probability density function for the copy number of the different molecules. The number of dimensions of the problem can be large making numerical simulation of the reactions computationally intractable. The number of dimensions is reduced here by deriving partial differential equations for the first moments ...
متن کاملA scalable moment-closure approximation for large-scale biochemical reaction networks
Motivation Stochastic molecular processes are a leading cause of cell-to-cell variability. Their dynamics are often described by continuous-time discrete-state Markov chains and simulated using stochastic simulation algorithms. As these stochastic simulations are computationally demanding, ordinary differential equation models for the dynamics of the statistical moments have been developed. The...
متن کاملDetermining the long-term behavior of cell populations: A new procedure for detecting ergodicity in large stochastic reaction networks
A reaction network consists of a finite number of species, which interact through predefined reaction channels. Traditionally such networks were modeled deterministically, but it is now well-established that when reactant copy numbers are small, the random timing of the reactions create internal noise that can significantly affect the macroscopic properties of the system. To understand the role...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 133 19 شماره
صفحات -
تاریخ انتشار 2010